快好知 kuaihz

物理、拓扑、逻辑与计算之罗塞塔石碑(五)

物理、拓扑、逻辑与计算之罗塞塔石碑(五)

约翰·贝兹, 迈克·斯徳

2009年3月2日

2.4 辫子幺半范畴

在物理中,常常会有这样一种过程,使得我们可以将两个系统绕过彼此来“交换”它们。在拓扑中,有一个缠结描述了交换两个点的过程:

在逻辑中,我们可以在两条陈述的合取中交换它们的次序:陈述“X与Y”和“Y与X”是同构的。在计算中,有一个简单的程序可以交换两段数据的次序。能做这类操作的幺半范畴被称为是“辫子的”:

 

定义 11 一个辫子幺半范畴由以下要素组成:

• 一个幺半范畴C,

• 一个称为编织的自然同构,为每一对对象X,Y∈C指定一个同构:

bX,Y: X⊗Y →Y⊗X,

使得六边形方程成立:

第一个六边形方程是说将对象X一次性换过Y⊗Z等同于先将它换过Y,再换过Z(同时扔进一些结合子来移动括弧)。第二个是相似的:它是说将X⊗Y一次性地换过Z等同于分两步来做。

用弦图来表示,我们可以把编织bX,Y: X⊗Y →Y⊗X画成这样:

我们把它的逆bX,Y-1画成这样:

(译注:这个图有点问题,应该把X和Y标记互换,因为bX,Y-1交换的是Y和X。)

这是一个很好的记法,因为它使得bX,Y和bX,Y-1的互逆方程是“拓扑正确”的:

(译注:同上,最右边的图应该把X和Y的标记互换。)

下面是六边形方程的弦图:

作为练习,我们敦促你证明以下方程:

如果你被卡住了,在这里给点提示。第一个方程源自编织的自然性。第二个被称为杨-巴克斯特方程,可结合自然性和六边形方程推导出来。

下一步,我们给出一些例子。可能有许多种不同的方式为一个幺半范畴赋予编织,也可能没有。不过,大多数我们钟爱的例子都伴随着众所周知的“标准”编织

•  任何笛卡尔范畴自动变成辫子的,并且在配备笛卡尔积的Set中,其标准编织由下式给出:

bX,Y: X×Y → Y×X

    (x,y)↦(y,x)。

• 在配有通常张量积的Hilb 中,标准的编织由下式给出:

bX,Y: X⨂Y → Y⨂X

    x⨂y↦y⨂x。

• 幺半范畴nCob 拥有一种标准编织,其中bX,Y微分同胚于圆柱体X×[0,1]与Y×[0,1]的无交并。对于2Cob来说,如果X和Y都是圆圈,这一编织形状如下:

• 幺半范畴 Tangk 当 k≥2 时拥有一种标准编织。对k=2来说,当X和Y都是一个单一点时,这一编织形状如下:

   Tangk 的例子展示了一种重要的模式。Tang0 就是一个范畴,因为在0-维空间里我们只能“串行”地执行过程:也就是,合成态射。Tang1 是一个幺半范畴,因为在1-维空间里,我们还可以“并行”地执行过程:也就是,张量积态射。Tang2 是一个辫子幺半范畴,因为在2-维空间中,有足够的余地将一个对象绕过另一个进行移动。下面我们将看到当空间有3维甚至更多维时会发生什么事情!

2.5 对称幺半范畴

有时候交换两个对象再换回来等同于什么也没干。其实,这种情况是耳熟能详的。因此,最初被发现的辫子幺半范畴其实是“对称的”:

定义12 一个对称幺半范畴是一个辫子幺半范畴,并且编织满足

bX,Y=bY,X-1。

  

   因此,在一个对称幺半范畴中,

(译注:请注意,上图跟互逆方程的图有所不同。)

或者等价地,

(译注:请注意,这里右边对应的是bY,X-1,交换的是X和Y,跟之前互逆方程中的bX,Y-1有所不同。)

   

   任何笛卡尔范畴自动变成对称幺半范畴,所以Set是对称的。也很容易验证 Hilb, nCob是对称幺半范畴。Tangk 在 k≥3 时也是。

有趣的是,Tangk 在 k=3 时“稳定”了:继续增加k的值得到的仅仅是与Tang3 等价的范畴。其原因在于,我们已经能够在4-维空间中解开所有的纽结了;增加更多维度没有什么实际效应。事实上,Tangk 在 k≥3 时等价于 1Cob 。这是被称为n-范畴“周期表” (Baez &  Dolan, 1995)的一个庞大的猜想模式的一部分。这个周期表的一部分展示在下表中。(译注:为方便读者参考和对照,这里我们列出中英两种版本的表格。)

表2.3 周期表:当j<k时仅有一个j-态射的(n+k)-范畴的猜想式描述

     

   一个n-范畴中不仅有对象之间的态射,还有态射之间的2-态射,2-态射之间的3-态射,一直下去,直到n-态射。在拓扑中我们使用n-范畴来描述高维面的缠结,而在物理中我们使用它们来描述粒子之外的弦和高维膜。我们这里描述的罗塞塔石碑仅仅涉及了周期表的n=1列。因此,它很可能是一个更大的,仍然深埋地下的n-范畴罗塞塔石碑的一小片段。

Bibliography

Baez, J., & Dolan, J. (1995).   Higher-dimensional algebra and topological quantum field theory, arXiv:   q-alg/9503002. J. Math. Phys.36, 6073-6105.

 

 

本站资源来自互联网,仅供学习,如有侵权,请通知删除,敬请谅解!
搜索建议:塔石  塔石词条  罗塞  罗塞词条  拓扑  拓扑词条  逻辑  逻辑词条  物理  物理词条  
观点

 线上教学的考试

现在全国绝中学生已经到学校上课了。小学生的中高年级也已经到学校上课了。只是小学低年级还有一部分在观察等待。自疫情以来,特别是自寒假结束之后,全国所有大中小学校都...(展开)