热(Heat)、卡路里(Caloric)和熵(Entropy)
2020-01-12
王安良
这三个作为名词的术语(Glossary)在Fuchs[1]的专著中是等价的,摘录如下:
Heat: Informal term for entropy. Equivalent to caloric. (Commonly the energy exchanged in heating is called heat; this usage is not followed in this text.)
Caloric: Used as an alternative term for heat. The caloric theory of heat can be rendered formal and correct in a modern sense if it is accepted that caloric is not conserved (that it can be produced). In this case it turns out to be equivalent to the entropy of a body.
Entropy: Formal for a quantity of heat or caloric. Entropy is the fluidlike quantity of thermal processes and thus obeys a law of balance. It can be stored (see heat function), it can flow (entropy current), and it can be created (see production).
在Fuchs看来,热力学中熵就是热,熵就是卡路里(去掉热质含义的)。我赞同之,并往前迈进了一小步。
热力学熵不是独立于物质存在的“物之质”,而是物质的属性之一,即“物之性”。熵量、质量和体量是物质(不考虑光)的三个不可或缺的基本量。
熵产是自发过程必然“附加”现象。其实,体增(或称体积膨胀)和质损(或称质量亏损)也是宇宙中自发过程所应附加的条件。
热力学第一定律描述的是宇宙自发过程所应遵循的基本规律,即守恒性和对称性。热力学第二定律描述的也是宇宙自发过程所应遵循的基本规律,即方向性和耗散性。
熵产就是耗散性的表现形式。但我认为并非唯一表现形式,还有体积膨胀、面积增大以及长度拉长等。我们已经知道,从数学的角度,两点之间可以有无限长的“距离”;一个质量(或体积)恒定的物体,可能存在无限大的表面积。而“宇宙膨胀”虽然还是个数学化的宇宙模型,并得到科学共同体多数人的认同。根本上来说,宇宙膨胀与熵增并不矛盾。
最核心的问题之一是:热与光之间是什么关系?或者换句话说,热辐射就是光辐射吗?相类似的问题还有:
熵能否在真空中独立传递(或传播),不借助光或其它电磁波?
万有引力与熵是怎样的关系?
另外,补充Fuchs的如下术语:
Heat function: the formal expression of the assumption that a body contains a certain amount of heat, where the heat stored is a function of the independent variables describing the properties of the body. This heat function turns out to be equivalent to the entropy of the body.
Entropy current: Measure of the transfer of entropy across the surface a system.
Entropy production: The process of the production of entropy as the result of an irreversible process.
参考文献
[1] Hans U.Fuchs, the dynamics of heat, 热动力学,世界图书出版社,Springer,2010