为了便于对该部分的理解,我们先以河水受体(详见前述博文生物介导的能流与河流的价值比较http://blog.sciencenet.cn/blog-3479210-1289546.html)为例,分析一下河水受体的特性。从河流的实际情况不难得知:
1)河水受体与河水供体之间的地势差,既驱动了河水的流动,又限定了河水的流动方向,即自然条件下只能从地势高的地方流向地势低的地方;
2)在河水的流动过程中,从河水供体流出的水并没有全部流入大海,例如,有的河水以水蒸气的形式进入空气中,有的河水则会被河流两岸的生物利用等;
3)在河道坡度相同的情况下,河水受体与河水供体之间的地势差越大,河流流经的路线就可能越远,受益的生物就有可能越多;
4)湖泊和大海都是河水受体,但大海的水容量远远大于湖泊,一般情况下,河流中的水在进入湖泊后,还会继续流出,直至大海。
5)因为河水受体的存在,所以才会有地势差介于河水受体和河水供体之间的其它的河流汇入该河流,致使主河流的水不容易干涸,即主河流能稳定的存在。
由此可见,河水受体自身的性质以及其与河水供体之间地势差的大小会影响河流的一些特征,如水流速、水流路径的长短等。对于能量受体而言,是否也有与河水受体相似的性质呢?
我们知道,化学反应的本质是电子的得失或转移。对于生物细胞而言,能量供体(如葡萄糖)在细胞内的代谢过程是由一些列的氧化还原反应组成。因此,能量供体中的能量在细胞内释放和传递的过程,也是能量供体中的电子在细胞内不断向氧化性物质传递的过程。基于此,能量受体也被称作“电子受体”,能量供体也被称作“电子供体”。例如,对于人体细胞而言,葡萄糖是电子供体,氧气是电子受体,葡萄糖中的能量经细胞释放和传递的过程,也是葡萄糖中的电子向氧气传递的过程。这里需要说明的是,葡萄糖中的电子向氧气传递的过程并不是指葡萄糖中的电子只传递给氧气,还有可能传递给其它与葡萄糖之间的电势差介于葡萄糖与氧气之间的氧化性物质。氧气因其相对较强的氧化性(接受电子的能力)限定了葡萄糖中的电子在细胞内的流动方向及传递途径。
本部分将重点探讨生物作为电子受体时的能量受体在历史长河中随生物进化而呈现的变化情况。对于生物而言,能量受体主要用于接受电子,为了便于理解,本部分中的“能量受体”以“电子受体”的表述形式呈现,“能量供体”以“电子供体”的表述形式呈现。在这里有一点需要说明的是,尽管很多化学物质具有接受电子的能力,但并不是所有可接受电子的物质都适合作为生物的电子受体。这是因为,生物自我构建及功能维持所需要的能量通常储存在ATP、GTP等“能量可用系统”中,而这些“能量可用系统”的生成并不是任何一个能够释放能量的化学反应都可以驱动的。也就是说,只有释放出足够能量的化学反应才有可能用以驱动ATP等“能量可用系统”的生成。一般情况下,电子供体和电子受体之间的能势差(电势差)越大,电子供体释放出的能量就会越多,细胞从中获取的能量也就越多,进而越有可能使自身的能量传递能力得到优化和升级。
此外,存在能势差的两种化学物质之间也不一定就会发生能量传递。正如前文所举的例子,葡萄糖和1,3-二磷酸甘油酸两种物质分子均与ADP存在能势差,然而,一般情况下,葡萄糖不会直接将能量传递给ADP,而是先经过一系列的转换变成1,3-二磷酸甘油酸后,才将释放出的能量储存入ADP,使其转变成“能量可用系统”ATP。由此可见,只有存在合适能势差的两种物质之间才会发生电子的传递或转移,也才会发生能量的传递。此外,正如河水受体的存在使得其它河流得以汇入主河流一样,电子受体的存在同样使得生物中的其它能流得以围绕在电子供体和电子受体之间主能流左右,进而使得介导能量流动的物质分子得以聚集在一起,形成一个稳定的利于能量传递的体系。
通过上述分析可见,电子受体的功能在于:1)保证电子供体在细胞代谢过程中所释放的电子向电子受体方向传递,即规定了代谢电子的流动方向;2)驱动生物的各个组成系统的聚集,即保障生物结构和功能的稳定性和完整性;3)保证生物在介导能量传递过程中,可以从中获取充足的能量,产生足够多的“能量可用系统”。
(https://mp.weixin.qq.com/s?__biz=Mzg2ODYxMzc3Nw==&mid=2247484033&idx=1&sn=536389e04fc097d9cd74fb65bf51ca92&chksm=cea8e97ff9df6069451efdb3198fb449e8c2aa78fd568ef4f1aa74e9ab22bfeb93eab7020d32&token=1612502510&lang=zh_CN#rd)